
An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 1

An Operators guide to the galaxy
Or how stopped worrying and
learned to love the kernel

 I want to preface this by stating that I am very much a noob. I have been fascinated
with Threat Emulation methodologies over the past two years. Recently I have become
a bit obsessed with drivers. I set up my first ever Red Team detection lab utilizing
sysmon and wazuh. I realized, staying silent is nearly impossible. Blending in is the best
option. I didnt like this feeling of defeat. As I dove deeper into my studies, I found a
really really good way to defeat these solutions was drivers. I used to think, “Who cares
about rings? I dont need kernel access to compromise a device.” I was VERY wrong.
Now, I want to quote Rasta here, but I also want to say, go buy his Red Team
Operations course, and his offensive driver development course, buy all of them. The
content has been invaluable to my growth and has supercharged my curiosity, and
supplied me with the tools needed to chase that curiosity with proper research.

“Windows drivers are able to register callback routines in the kernel, which are triggered
when particular events occur. These can include process and thread creation, image
loads and registry operations.” - CRTL, Rasta Mouse.

Now, you can see why a lot of EDR/AV solutions would rely on the kernel callback table
for recognizing potentially malicious events.

Queue APT’s and Bring Your Own Driver (BYOD)

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 2

There have been quite a few vulnerable drivers that have been exploited in the past
years. For the sake of learning, I chose the same one used by BlackByte, MSI’s
RTCore64.sys.

I went through quite a few peoples PoC’s of this. Alot were done shakily. Some required
python scripts to check for the bytes occuring before jmp
PspSetXXXXNotifyRoutine depending on the version of ntoskrnl.exe. These values can differ
across windows versions. The most advanced in this space was a project from an
individual by the name of lawiet47. It was able to do all of the legwork for us.

Lets dive into some of the code:

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 3

Nothing to special going on here. The code is utilizing CreateFileW function to grab a
handle to the driver we have installed (RTCore64.sys) and then setting read/write
permissions so that we can patch over the existing entries in the callback table.

This piece of code is utilizing the EnumDeviceDrivers function to leak the kernel base
address.

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 4

Again, they did a good job with their comments. Were just kind of brute forcing the byte
sequences in hopes that something matches. 20 has been a perfect length and hasn’t
given me any issues on windows 10, windows server 2019 or windows server 2016.

Now were taking the kernel address that we leaked earlier, and the byte code arrays
that we calculated, and checking them against the byte pattern that occurs before the

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 5

jmp instruction.

If the conditions match jmp nt!PspSetXXXXNotifyRoutine, well grab the name of the
driver, and patch the callbacks.

Okay, enough code.

I did not have any way of really getting a driver loaded EDR solution. I had to go with a
Sysmon related solution. I want to thank the Spectre Ops Team along with jsecurity101.
They really did a great job with reverse engineering sysmon and correlating event ID’s
to kernel callbacks.

For brevity, im going to use runas to start cmd.exe and show the events in Event
Viewer.

starting the vulnerable driver and launching cmd with runas:

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 6

Now we can see clear as day that sysmon was able to log our process creation event.
Us using runas.exe to start the cmdline as another user. We also know from
SpectreOps and jsecurity101 that event ID 1 in sysmon correlates to the
PsSetCreateProcessNotifyRoutine. Lets see if we can get rid of that.

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 7

First lets list what drivers are loaded with our newest tool:

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 8

Its apparent that the Sysmon driver is installed. Lets take care of that.

Now, we need to be sure that we’ve successfully removed the kernel callback. I’m
going to try the exact same command with runas as I used before.

An Operators guide to the galaxy Or how stopped worrying and learned to love the kernel 9

Lets refresh our event viewer and see if the behaviour was flagged as it was before.

Nothing. We have successfully patched over the kernel callback table. our process
creation events are non-existent.

Sources:

https://github.com/jsecurity101/TelemetrySource

https://github.com/lawiet47/STFUEDR

https://training.zeropointsecurity.co.uk/

https://redcursor.com.au/bypassing-lsa-protection-aka-protected-process-light-without-
mimikatz-on-windows-10/

https://github.com/jsecurity101/TelemetrySource
https://github.com/lawiet47/STFUEDR
https://training.zeropointsecurity.co.uk/
https://redcursor.com.au/bypassing-lsa-protection-aka-protected-process-light-without-mimikatz-on-windows-10/

