
Exploring Shinra Defenses 1

Exploring Shinra Defenses
Notes, observations, and the straight and narrow of XCT’s Shinra lab.

Shinra truly starts out with a phishing attempt. Theres no one thing that "bypasses" or "evades" all defensive
tooling. This is a collection of things that helped me.

Session prepping:

One thing pointed out by xct, and many others is memory protections. Alot of EDR's alert on the flipping of
memory to rwx. This is classic beacon behavior. I opted to change this in my malleable profile by setting the
"userwx" variable to false.

You can implement this in your code as well. I will save you reading a ton of code, but my approach was what
you may see in some shellcode loaders called "NTMapViewofSection" and is a combination of four native
function calls:

NTCreateSection - Create a new section in the current process

NtMapViewOfSection - map the previous section into our process as RW

NtMapViewofSection - map the region from the previous step into a TARGET process as RX.

NtCreateThreadEx - create/Execute the thread in the target process.

We are performing process injection here. however, we cant provide a command line argument. We could just
define a process ID and pray a process with that PID is running, or we can use Process.GetProcessByName.

This will search for the first instance of the process you defined, and inject itself there(dont choose explorer.exe
in real life, this is bad opsec. For some reason I had more luck with explorer over dllhost and svchost here. i
believe because its in a directory whitelisted by applocker but i dont remember ATM.

Exploring Shinra Defenses 2

Now, since my loader is a .net framework application, I can use a tool called confuser. You can grab confuser
here:

https://mkaring.github.io/ConfuserEx/

This is an incredible tool. Its for developers to "Protect" their source code. However, its great for malware. It has
Anti-Debug, Anti-Dump,Control Flow obfuscation, Function obfuscation and more.

https://mkaring.github.io/ConfuserEx/

Exploring Shinra Defenses 3

WDAC & Applocker

Now send the payload & profit:

Now, we have the opportunity to enumerate all of the defenses we have stacked against us. We already know
Applocker and CLM are present here.

RastaMouse has pointed out that the Get-ChildItem cmdlet is still available to us in Constrained language
mode.

Lets leverage this to grab the applocker policy

powershell Get-ChildItem "HKLM:Software\Policies\Microsoft\Windows\SrpV2\Exe"

Voila, we have an idea about applocker. Now, .NET and powershell both rely on @types to run. We wont be
able to enumerate much information about the AD environment until we bypass this.

Exploring Shinra Defenses 4

First, lets inject an amsi bypass into the current process were running. I use bobby cookes bof:

https://github.com/boku7/injectAmsiBypass

There are a million tools and such to do this out there.

After injecting an amsi bypass I also go ahead and use raphael's unhook bof to remove any hooks the edr may
have on processes, and then import powerview as i would normally. Now, im using unmanaged powershell with
powerpick. this is important. powershell is not powershell.exe. powershell is
System.Management.Automation.dll. We can utilize this to run a Powershell runspace from within C
with tools like powerpick. (hoping the edrs "malicious powershell" rules are tied to powershell.exe and not the
actual dll.)

https://github.com/specterops/at-ps

Cobalt Strike 3.3 - Now with less PowerShell.exe - Cobalt Strike Research and Development

Cobalt Strike 3.3 - Now with less PowerShell.exe. :) [...]Read More...

https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

Its time to attempt to unhook processes that elastic may be targeting. I use raph’s old bof for this.

https://github.com/rsmudge/unhook-bof

https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

Exploring Shinra Defenses 5

We can utilize powerview to grab the WDAC policy like such (credit rasta):

Alright! We are in good shape!! lets check lateral movement opportunities with powerview!

Exploring Shinra Defenses 6

Okay, ADCS, yay, thats always fun. We also found dc, client04 and file01. The focus here is defenses. So lets
see if we can pull the wdac policy from the domain controller since we have share access. were going in blind
and dont have wmi access so we cant drop a file on the share and invoke it remotely. we can just list the share:

voila! a bunch of registry.pol files :D download them!

Now, we can just pull them locally and parse them for the rules with matt greenes GPRegistryPolicyParser tool.

https://github.com/PowerShell/GPRegistryPolicyParser

Exploring Shinra Defenses 7

BOOM! No more guessing :D. This can also be repeated for each machine.

